
SARD: A Software Assurance
Reference Dataset

Paul E. Black
SAMATE Project

Software Quality Group
Software & Systems Division

NIST

Certain trade names and company products
are mentioned in the text or identified. In no
case does such identification imply
recommendation or endorsement by the
National Institute of Standards and
Technology (NIST), nor does it imply that the
products are necessarily the best available
for the purpose.

15 September 2015 Paul E. Black 2

What is Static Analysis?

Java,
C,

C++,
…

binary

3	

What is Static Analysis?

Weaknesses
&

Vulnerabilities

Java,
C,

C++,
…

binary

Static
Analyzer

l  Examine	 source	 code	 or	 binary	 for	 weaknesses,	
adherence	 to	 guidelines,	 etc.	

l  Level	 of	 formality	 may	 vary	 from	 program	 “proofs”	 to	
heuristics	

l  Level	 of	 automation	 may	 vary	 from	 analysis	 assistant	
to	 fully	 automated	

4	

Weaknesses
&

Vulnerabilities SARD
Static

Analyzer

5	

Known
Weaknesses

&
Vulnerabilities

programs
with

known
bugs

Testing Static Analysis Tools

Three	 Desired	 Characteris1cs	 of	
Test	 Suites	 	

l  Needs	
–  Test	 cases	 applicable	 to	

production	 code	
–  Statistically	 significant	

number	 of	 test	 cases	
–  Test	 cases	 with	 ground	

truth:	 known	 bugs	

l  Objective:	 	
–  Collect	 and	 develop	 test	

cases	 with	 those	
characteristics	

Known	 Bugs	

Produc1on	
Code	

Sta1s1cally	
	 	 Significant	

Perfect	
Test	
Suite	

6	

l  Achievements	
–  Collect	 millions	 of	 tool	

warnings	 for	 open	
source	 software	 from	
SATE	

–  Manually	 analyze	
hundreds	 of	 reported	
bugs	 (CVEs)	 in	 open	
source	 software	 to	
establish	 ground	 truth	

–  Juliet	 test	 suite:	
hundreds	 of	 thousands	
of	 synthetic	 test	 cases	
with	 known	 bugs	

Known	 Bugs	

Produc1on	
Code	

Sta1s1cally	
	 	 Significant	

CVE	

SATE	

Juliet	

Three	 Desired	 Characteris1cs	 of	
Test	 Suites	 	

7	

Material to Properly Test Tools
l  Static analysis
l  Dynamic bug detection

8

Software Assurance Reference Dataset
(SARD)

9

Need:
l  Suites of programs with

known bugs to calibrate
software assurance tools

Objective:
l  Collect and develop sets of

programs with known bugs in
various languages, with bugs
of various classes, and bugs
woven into various code
structures

http://samate.nist.gov/SARD/

Software Assurance Reference Dataset
(SARD)

10

l  Over 89 000 cases in C, C++, Java, C#, and PHP
l  Contributions also from Fortify, Defence R&D

Canada, Klocwork, Kratkiewicz, MIT Lincoln
Laboratory, Secure Software, Praxis, etc.

l  NSA Juliet 1.2 - over 86 000 small, synthetic test
cases in C, C++, and Java covering 150 bug
classes

l  IARPA STONESOUP Phase 3 - 15 000 cases based
on 12 web apps with injected bug from 25 classes

l  2000 PHP cases developed at TELECOM Nancy
l  Users can search and download by language,

weakness, size, content, etc.
l  Test cases from Static Analysis Tool Exposition

(SATE)

10	

Juliet 1.2 Test Suite

l  86 864 small C/C++ and Java programs for
almost two hundred weakness classes

l  Each case is one or two pages of code
l  Described in IEEE Computer, Oct 2012

11

IARPA STONESOUP Phase 3
cases
l  7770 cases in Java and C
l  Real programs with flaw inserted. Each

case has inputs to trigger flaw and “safe”
inputs

l  Each case has inputs triggering the
vulnerability, as well as “safe” inputs

l  Cover weaknesses in Integer Overflow,
Tainted Data, Command Injection, Buffer
Overflow, Null Pointer, etc.

Kratkiewicz MIT cases
l  1164 cases in C for CWE-121 Stack-Based

Buffer Overflow
l  Created to investigate static analysis and

dynamic detection methods
l  Each case is one of four variants:

–  access within bounds (ok)
–  access just outside bound (min)
–  somewhat outside bound (med)
–  far outside bound (large)

l  Code complexities: index, type, control, …

Other SRD Content
l  Zitser, Lippmann, & Leek MIT cases

–  28 slices from BIND, Sendmail, WU-FTP, etc.
l  Fortify benchmark 112 C and Java cases
l  Klocwork benchmark 40 C cases
l  25 cases from Defence R&D Canada
l  Robert Seacord, “Secure Coding in C and

C++” 69 cases
l  Comprehensive, Lightweight Application

Security Process (CLASP) 25 cases
l  329 cases from our static analyzer suite

Common	 Nomenclature	
Common	 Weakness	
Enumeration	 (CWE)	

l  A	 “dictionary”	 of	 every	 class	
of	 bug	 or	 flaw	 in	 software	

l  More	 than	 600	 distinct	
classes,	 e.g.,	 buffer	 overflow,	
directory	 traversal,	 OS	
injection,	 race	 condition,	
cross-‐site	 scripting,	 hard-‐
coded	 password,	 and	
insecure	 random	 numbers	

	 	 	 	 	 	 	 	 	 	 	 http://cwe.mitre.org/	

Common	 Vulnerability	
Enumeration	 (CVE)	

l  A	 list	 of	 instances	 of	 security	
vulnerabilities	 in	 software	

l  More	 than	 9000	 CVEs	 were	
assigned	 in	 2014	
Heartbleed	 is	 CVE-‐2014-‐0160	

l  NIST’s	 National	 Vulnerability	
Database	 (NVD)	 has	 fixes,	
severity	 ratings,	 etc.	 for	 CVEs	

	 	 	 	 	 	 	 	 	 	 	 	 https://cve.mitre.org/	

15	

Common Weakness Enumeration
(CWE) is a Mess
l  CWE is widely used - by far the best dictionary of

software weaknesses. Many tools, projects, etc.
are based on CWE.

l  But definitions are imprecise and inconsistent.
l  CWEs are “coarse grained”: they bundle lots of

stuff, like consequences and likely attacks.
l  The coverage is uneven, with some combinations

well represented and others not represented at all.
l  No mobile weaknesses, eg., battery drain, physical

sensors (GPS, gyro, microphone, hi-res camera),
unencrypted wireless communication, etc.

16

Definitions are Imprecise
l  CWE-119: Improper Restriction of Oper-

ations within the Bounds of a Memory
Buffer:
“The software performs operations on a memory
buffer, but it can read from or write to a memory
location that is outside of the intended boundary
of the buffer.”

•  Note that “read from or write to a memory

location” is not tied to the buffer!

17

Overflow Has Gaps in Coverage
l  CWE-124: Buffer Underwrite (’Buffer

Underflow') and CWE-120: Buffer Copy
without Checking Size of Input ('Classic
Buffer Overflow') vs.

l  CWE-121: Stack-based Buffer Overflow and
CWE-122: Heap-based Buffer Overflow

l  CWE-127: Buffer Under-read and CWE-126:
Buffer Over-read

l  but no read-stack and read-heap versions.

18

… and a buncha’ others, too
l  CWE-123: Write-what-where Condition
l  CWE-125: Out-of-bounds Read
l  CWE-787: Out-of-bounds Write
l  CWE-786: Access of Memory Location Before

Start of Buffer
l  CWE-788: Access of Memory Location After End

of Buffer
l  CWE-805: Buffer Access with Incorrect Length

Value
l  CWE-823: Use of Out-of-range Pointer Offset

19

Path Traversal is too Detailed
l  CWE-23: Relative Path Traversal
l  CWE-24: Path Traversal: '../filedir’
l  CWE-25: Path Traversal: '/../filedir’
l  CWE-26: Path Traversal: '/dir/../filename’
l  CWE-27: Path Traversal: 'dir/../../filename’
l  CWE-28: Path Traversal: '..\filedir’
l  CWE-29: Path Traversal: '\..\filename’
l  CWE-30: Path Traversal: '\dir\..\filename’
l  CWE-31: Path Traversal: 'dir\..\..\filename’
l  CWE-32: Path Traversal: '...' (Triple Dot)
l  CWE-33: Path Traversal: '....' (Multiple Dot)
l  CWE-34: Path Traversal: '....//’
l  CWE-35: Path Traversal: '.../...//'

20

Other Bug Descriptions Have
Problems, Too.
l  Software Fault Patterns (SFP)

–  “factor” weaknesses into parameters, but
–  don’t include upstream causes or consequences,
–  and are based solely on CWEs.

l  Semantic Templates
–  collect CWEs into four general areas

•  Software-fault
•  Weakness
•  Resource/Location
•  Consequences

–  but are guides to aid human comprehension.
21

We Need Better Vocabulary
l  Finer grained, common vocabulary to

describe bugs
–  Common Weakness Enumeration (CWE) is

widely-used, but does not match well the
classes that tools report. Tools’ classes are
precise, but are hard to match to other tools.

22

Precise Medical Vocabulary
•  Medical	 professionals	 have	 terms	 to	 precisely	 name	

muscles,	 bones,	 organs,	 condi1ons,	 diseases,	 and	 so	 forth.	

23

Periodic Table Took Centuries
l  Greeks used the terms element and atom.
l  Aristotle: everything is a mix of Earth, Fire, Air, or Water.
l  Alchemists in the Middle Ages cataloged materials like

alcohol, sulfur, mercury, and salt.
l  Lavoisier listed 33 elements and

distinguished metals and non-metals.
–  including oxygen, nitrogen, hydrogen, phosphorus,

mercury, zinc, sulfur, light, and caloric.
l  Dalton realized “atoms of same element are

identical in all respects, particularly weight.”
l  Mendeleev’s table embodied centuries of

knowledge that reflects atomic structure
and forecast properties of missing
elements.

Specify Location with
Latitude, Longitude, and Elevation

25

Fingerprints

26

l  Classified as loop, whorl, or arch.
l  Retrieved by minutia

Chemists Have Detailed Systems
to Describe Chemicals

27

Zofran ODT is: C18H19N3O

(±) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one

Integers Have Prime Factors

28

43,747,298,756 = 2 × 2 × 7 × 641
 × 1471 × 1657

70 = 2 × 5 × 7

6 = 2 × 3

Our vision is to have
a precise descriptive language for bugs

organized in a “natural” way.
(e.g., vocabulary, grammar, taxonomy, ontology, etc.)

29

Outline
l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This

30

We Start With Buffer Overflow
l  Our Definition:

The software can access through a buffer a memory
location that is not allocated to that buffer.

l  Clearer than CWE-119: Improper Restriction of
Operations within the Bounds of a Memory Buffer:
“The software performs operations on a memory
buffer, but it can read from or write to a memory
location that is outside of the intended boundary of
the buffer.”

31

Buffer Overflow: Attributes

32

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.

33

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).

34

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

35

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
•  Method:

Ø  Indexed, (bare) Pointer.

36

t = buf[j]; *buf = mind();

•  Access:
Ø  Read, Write.

•  Side:
Ø  Below (before, under, or lower), Above (after, over, or upper).

•  Segment (memory area):
Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).

•  Method:
Ø  Indexed, (bare) Pointer.

•  Magnitude (how far outside):
Ø  Minimal (just barely outside), Moderate, Far (e.g. 4000).

Buffer Overflow: Attributes

37

Buffer Overflow: Attributes
•  Access:

Ø  Read, Write.
•  Side:

Ø  Below (before, under, or lower), Above (after, over, or upper).
•  Segment (memory area):

Ø  Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text).
•  Method:

Ø  Indexed, (bare) Pointer.
•  Magnitude (how far outside):

Ø  Minimal (just barely outside), Moderate, Far (e.g. 4000).
•  Data Size (how much is outside):

Ø  Minimal, Some (e.g. half dozen), Gazillion.

38

N a t i o n a l I n s t i t u t e o f

Buffer Overflow: Causes
 Buffer Overflow

Attributes:
• Access:
ü Read, Write.

• Side:
ü Below (before or under),
Above (after or over)

• Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

• Method:
ü Indexed, (bare) Pointer.

• Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

• Data Size (how much data) :
ü Minimal, Some, Gazillion.

No NULL
Termination

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Incorrect
Conversion

Incorrect Calculation

Off By One

User Input Not
Checked Properly

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

39

The graph of causes shows:
Ø  There are only 3 proximate causes of buffer

overflows:
•  Destination is too small
•  Data is too big
•  Wrong index / pointer out of range.

Ø  Those 3 have preceding causes that may lead
to them.

 Buffer Overflow
Attributes:

• Access:
ü Read, Write.

• Side:
ü Below (before, under, or lower),
Above (after, over, or upper).

• Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

• Method:
ü Indexed, (bare) Pointer.

• Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

• Data Size (how much data) :
ü Minimal, Some, Gazillion.

Buffer Overflow: Consequences

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

40

Buffer Overflow: Causes,
Attributes, and Consequences

 Buffer Overflow
Attributes:

•  Access:
ü Read, Write.

•  Side:
ü Below (before, under, or lower),
Above (after, over, or upper).

•  Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

•  Method:
ü Indexed, (bare) Pointer.

•  Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

•  Data Size (how much data):
ü Minimal, Some, Gazillion.

No NULL
Termination

Causes Consequences

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Incorrect
Conversion

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

User Input Not
Checked Properly

The graph of causes shows:
Ø  There are only 3 proximate causes of buffer

overflows:
•  Destination is too small
•  Data is too big
•  Wrong index / pointer out of range.

Ø  Those 3 have preceding causes that may lead
to them. 41

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Outline
l  The “Science” of Weaknesses
l  Our Nomenclature
l  Examples of Applying Our Approach
l  Using This

42

Example 1: Heartbleed
CVE-2014-0160
Heartbleed buffer overflow is:

–  caused by Data Too Big
–  because of User Input not Checked Properly
–  where there was a Read that was After the end, Far outside
–  reading a Gazillion bytes
–  from a buffer in the Heap
–  that may be exploited for Information Exposure
–  when enabled by Sensitive Information Uncleared Before

Release (CWE-226).

The (1) TLS and (2) DTLS implementations … do not properly
handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory
via crafted packets that trigger a buffer over-read, as
demonstrated by reading private keys, …

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

43

44

from
http://xkcd.com/1354/

Example 1: Heartbleed

 Buffer Overflow
Attributes:

•  Access:
ü Read, Write.

•  Side:
ü Below (before, under, or lower),
Above (after, over, or upper).

•  Segment (memory area):
ü Heap, Stack, BSS,
Data (initialized), Code (text)

•  Method:
ü Indexed, (bare) Pointer.

•  Magnitude (how far outside):
ü Minimal (just barely), Moderate,
Far (e.g. 4000).

•  Data Size (how much data):
ü Minimal, Some, Gazillion.

No NULL
Termination

Destination
Too Small

Wrong Index / Pointer
Out of Range

Data
Too Big

Resource Exhaustion
(Memory/CPU)

Information
Exposure

Information
Loss

Arbitrary Code
Execution

System
Crash

Program
Crash

Denial Of
Service

User Input Not
Checked Properly

45

Example 1: Heartbleed
CVE-2014-0160

Sensitive
Info Uncleared Before

Release

h a t \0 k e y = 1 4 8 3 5 0 3 8 I s a b e

Incorrect Calculation

Off By One

Integer
Underflow

Integer Overflow
Wrap-around

Integer
Coercion

Incorrect
Argument

Missing
Factor

Incorrect
Conversion

Example 2: Ghost
CVE-2015-0235

Ghost — gethostbyname buffer overflow is
–  caused by a Destination Too Small
–  because of an Incorrect Calculation, specifically Missing

Factor,
–  where there was a Write that was After the end by a

Moderate number of bytes
–  of a buffer in the Heap
–  that may be exploited for Arbitrary Code Execution.

Heap-based buffer overflow in the __nss_hostname_digits_dots
function … allows context-dependent attackers to execute
arbitrary code via vectors related to the (1) gethostbyname or (2)
gethostbyname2 function, aka “GHOST.”

46

Example 3: Chrome
CVE-2010-1773

Chrome WebCore — render buffer overflow is
–  caused by a Wrong Index
–  because of an Incorrect Calculation, specifically Off by One,
–  where there was a Read that was Below the start by a Minimal

amount
–  of a buffer in the Heap
–  that leads to use of User Input Not Checked Properly
–  that may be exploited for Information Exposure, Arbitrary Code

Execution, or Program Crash leading to Denial of Service.

Off-by-one error in the toAlphabetic function …, allows remote
attackers to obtain sensitive information, cause a denial of service
(memory corruption and application crash), or possibly execute
arbitrary code via vectors related to list markers for HTML lists, …

47

Example 4: Refactoring CWEs
Applying our definition and attributes, Buffer Overflow CWEs can be
categorized as follows.

 before a)er either end stack heap
read 127 126 125
write 124 120 123, 787 121 122

either r/w 786 788

Table	 2.	 Buffer	 Overflow	 CWEs	 Organized	 by	 AUribute.	

48

